

Development of Machine Learning models to predict RT-PCR results for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in patients with influenza-like symptoms using only basic clinical data.

Background

Ospedale Niguarda

Affiliations

¹ Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy;

²Department of Anaesthesia and Intensive Care Medicine, Niguarda Ca' Granda, Milan, Italy;

³ Department of General oncologic and miniinvasive Surgery, Niguarda Ca¹ Granda, Milan, Italy;

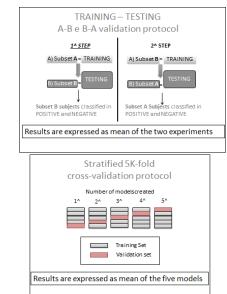
⁴Semeion Research Center of Sciences of Communication, Rome, Italy;

⁵Villa Santa Maria Foundation, Tavernerio, Italy RT-PCR for SARS-COV-2 diagnosis currently requires quite a long time span. A *quicker and more efficient diagnostic* tool in emergency departments (ED) could improve management during this global crisis. Our main goal was assessing the accuracy of *artificial intelligence (AI)* in *predicting the results of RT-PCR for SARS-COV-2*, using basic information at hand in all ED.

Methods

This is a *retrospective study* carried out between February 22, 2020 and March 16, 2020 in one of the main hospitals in Milan, Italy.

Inclusion criteria:


- patients admitted to the ED of Niguarda hospital with influenza-like symptoms

- a performed SARS-COV-2 test in ED.

Exclusion criteria:

- Patients < 12 years old
- absence of leukocyte formula in the ED.

We created a dataset with 74 variables, collected from a combination of *clinical, radiological and routine laboratory* findings upon hospital admission. The RT-PCR results constituted the target variable of the prediction model.

Different Machine Learning algorithms were trained using both the *Training and Testing AB-BA sequence and the K-fold cross-validation protocol*.

Results

Among 199 patients subject to study (median [interquartile range] age 65 [46-78] years; 127 [63.8%] men), 124 [62.3%] resulted positive to SARS-COV-2. The AI model selected 42 out of the 74 collected variables.

The best Machine Learning System reached an *accuracy of 91.4%* with *94.1% sensitivity and 88.7% specificity*. Other AI algorithm had similar results but were less efficient.

Machine Learning System	Sensitivity	Specificity	Overall accuracy	AUROC
D_FF_Conic (4x12x12x12)	94.1	88.7	91.4	0.90
D_FF_Conic (6x12x12x12)	92.5	90.2	91.3	0.91
D_FF_Bp (24)	89.2	93.0	91.1	0.93
D_FF_Bp (16x16x16x16)	93.2	88.7	91.0	0.92
D_FF_GNet (64)	90.7	90.2	90.5	0.90
Mean results	91.9	90.2	91.1	0.91

The following variables hold a *considerable weight* in the mathematical model:

- Leukocyte	- Monocyte	
- Lymphocyte	- Age	
- Eosinophil	- Female sex	
- Basophil		

Conclusion

Our exploratory study suggests that properly trained artificial intelligence algorithms may be able to predict correct results in RT-PCR for SARS-COV-2, using basic clinical data.

If confirmed in larger multicentre studies, this could have important clinical and organizational implications.